Entry tags:
Корень Бринга
Узнал через посредство Саши Венедюхина про корень Бринга — такую вот даже не то что абстракцию, но формальную сущность, с помощью которой решения произвольных уравнений пятой степени становятся реальными.
Почему-то это решение мне кажется читерским. В смысле, я привык к мысли о неразрешимости уравнений пятой и выше степеней в общем виде радикалах и предполагал, что альтернативы нет. А тут даже не дополнение поля происходит, а просто syntax sugar для того, чтобы возможность выразить решение появилась — но неуютно. Причём это, комплексные числа в своё время в голову как информобъекты как родные легли. Загадка, в общем.
При том, что точные формулы для уравнений высоких степеней, в общем-то нафиг никому не сдались в реальной жизни — возникают проблемы с устойчивостью решений при малом шевелении, а численные методы подойдут для большинства практических целей.
Update: Пока катался, до меня дошло, что не так с корнями Бринга. С обычными радикалами или комплексными числами много чего можно сделать. Можно умножить на константу и внести константу под корень. Можно домножить на сопряжённое выражение и от иррациональности избавиться. С корнями Бринга такого сделать не получится. Неочевидно даже, как связаны Br(a) и Br(-a), к примеру. Получаются символы без очевидной семантики, которые, тем не менее, можно вычислить. Из привычной массовой математики таковыми являются разве что π или e.
Почему-то это решение мне кажется читерским. В смысле, я привык к мысли о неразрешимости уравнений пятой и выше степеней в общем виде радикалах и предполагал, что альтернативы нет. А тут даже не дополнение поля происходит, а просто syntax sugar для того, чтобы возможность выразить решение появилась — но неуютно. Причём это, комплексные числа в своё время в голову как информобъекты как родные легли. Загадка, в общем.
При том, что точные формулы для уравнений высоких степеней, в общем-то нафиг никому не сдались в реальной жизни — возникают проблемы с устойчивостью решений при малом шевелении, а численные методы подойдут для большинства практических целей.
Update: Пока катался, до меня дошло, что не так с корнями Бринга. С обычными радикалами или комплексными числами много чего можно сделать. Можно умножить на константу и внести константу под корень. Можно домножить на сопряжённое выражение и от иррациональности избавиться. С корнями Бринга такого сделать не получится. Неочевидно даже, как связаны Br(a) и Br(-a), к примеру. Получаются символы без очевидной семантики, которые, тем не менее, можно вычислить. Из привычной массовой математики таковыми являются разве что π или e.
no subject
А всякие прочие симметрии и свойства - они у одних функций есть, а у других нет. Например sqrt(x+y) никак не упрощается, а sin(x+y) разворачивается по известной тригонометрической формуле.
При этом sqrt(xy) - понятно что, а sin(xy) - неупрощаемый тупик [и вообще, по большому счету, бессмыслица, которая нигде, кроме как в задачнике, возникнуть не может, если оба сомножителя иррациональные].
Так что у всех свои достоинства и свои недостатки.
Да и просто забавно говорить о том, что 640K хватит для всех [== почти все нужды закрываются численными методами] тем людям, которые по долгу службы связаны с криптографией и занимаются точным счетом в конечных полях.
no subject
Ну, насколько вообще там можно говорить о "малости" в том смысле, как о ней говорят в матане и вычметодах
no subject
no subject
А вот sin(xy), когда оба числа иррациональные - бессмыслица. Нигде такое не нужно, ни в рядах Фурье, ни в физике, ни в тригонометрии.
no subject
Особенно учитывая, что она измеряется в радианах в секунду, а всякое инженерное норовят делать с целым количеством оборотов в секунду. Взять хотя бы банальную формулу моментальной силы тока, текущей через резистор сопротивлением R, воткнутый в стандартную розетку на 220 Вольт и 50 Герц.
no subject
И радианы/сек * сек - это радианы, от которых спокойно можно взять синус.
А когда sin(xy), то, по умолчанию, обе переменные равноправны, так что размерность получится радиан^2, что нафиг никому не нужно: телесные углы именно в них и измеряются но синусов от телесных углов нет, слишком они разные.
А если размерность радиан, тогда размерность переменных sqrt(радиан), что вообще дичь.
И не надо говорить, что радиан безразмерен. Ну да, это так. Но в приложениях это либо углы, либо функции кратного аргумента.
no subject
no subject
Да и начали приводить примеры из физики вы :)
no subject
an = 1/(n5 × cos(n))
? Прошу прощения за кривую нотацию, надеюсь, смысл понятен. Да, там именно косинус от целого числа (в радианах), так и задумано. Задачка сильно тоньше, чем кажется на первый взгляд. Дальше подсказывать или вы и так знаете?
... Отдел по борьбе с организованной реальностью ...
no subject
no subject
Ну и биллинг - это примитив. А если нужно что-то хоть чуть более содержательное, хотя бы решение больших линейных систем [реально возникающее на практике почти всюду] - то уже придется применять нетривиальные усилия для борьбы с лавинообразным накоплением вычислительной погрешности. Как бальзам на душу скажу, что эти усилия являются неотъемлемой частью численных методов, а наивные численные методы заканчиваются примерно на "задачах" вроде биллинга.
no subject
no subject
Хотя и не знаю, где у вас заканчивается понимание и начинается непонимание. Радикал Бринга - новость; понимания, где могли бы быть актуальны "решения в радикалах" тоже, по вашим словам, нет.
А еще бывает сарказм и ирония, границы которых тоже не всегда различимы :)
no subject
no subject