Entry tags:
Корень Бринга
Узнал через посредство Саши Венедюхина про корень Бринга — такую вот даже не то что абстракцию, но формальную сущность, с помощью которой решения произвольных уравнений пятой степени становятся реальными.
Почему-то это решение мне кажется читерским. В смысле, я привык к мысли о неразрешимости уравнений пятой и выше степеней в общем виде радикалах и предполагал, что альтернативы нет. А тут даже не дополнение поля происходит, а просто syntax sugar для того, чтобы возможность выразить решение появилась — но неуютно. Причём это, комплексные числа в своё время в голову как информобъекты как родные легли. Загадка, в общем.
При том, что точные формулы для уравнений высоких степеней, в общем-то нафиг никому не сдались в реальной жизни — возникают проблемы с устойчивостью решений при малом шевелении, а численные методы подойдут для большинства практических целей.
Update: Пока катался, до меня дошло, что не так с корнями Бринга. С обычными радикалами или комплексными числами много чего можно сделать. Можно умножить на константу и внести константу под корень. Можно домножить на сопряжённое выражение и от иррациональности избавиться. С корнями Бринга такого сделать не получится. Неочевидно даже, как связаны Br(a) и Br(-a), к примеру. Получаются символы без очевидной семантики, которые, тем не менее, можно вычислить. Из привычной массовой математики таковыми являются разве что π или e.
Почему-то это решение мне кажется читерским. В смысле, я привык к мысли о неразрешимости уравнений пятой и выше степеней в общем виде радикалах и предполагал, что альтернативы нет. А тут даже не дополнение поля происходит, а просто syntax sugar для того, чтобы возможность выразить решение появилась — но неуютно. Причём это, комплексные числа в своё время в голову как информобъекты как родные легли. Загадка, в общем.
При том, что точные формулы для уравнений высоких степеней, в общем-то нафиг никому не сдались в реальной жизни — возникают проблемы с устойчивостью решений при малом шевелении, а численные методы подойдут для большинства практических целей.
Update: Пока катался, до меня дошло, что не так с корнями Бринга. С обычными радикалами или комплексными числами много чего можно сделать. Можно умножить на константу и внести константу под корень. Можно домножить на сопряжённое выражение и от иррациональности избавиться. С корнями Бринга такого сделать не получится. Неочевидно даже, как связаны Br(a) и Br(-a), к примеру. Получаются символы без очевидной семантики, которые, тем не менее, можно вычислить. Из привычной массовой математики таковыми являются разве что π или e.
no subject
Какая прелесть. Напомнило мне школьное детство. С этими радикалами под радикалами и с подстановками.
(no subject)
no subject
Против решения уравнений в значениях тригонометрических функций возражений нет?
Или вообще в каких-нибудь неэлементарных.
Тут ровно та же идея, могли бы вообще ввести функцию, возвращающую корень произвольного уравнения пятой степени, но ограничились корнем функций вида x^5+x+a.
При решении квадратных уравнений их корни ровно точно также выражаются через корни многочленов из семейства x^2+a.
UPD. Ну и от циркуля и линейки происходит решение в квадратных радикалах.
А уже радикалы кубические циркулем и линейкой не строятся.
И уравнений пятой степени, у которых только часть корней выражается в радикалах, тоже не бывает. Либо все корни выражаются, либо ни один не выражается.
Да и сетка для тенниса нафиг никому не сдалась, в футбол и кучу других игр играют без нее. Выражение чего-то через что-то такая же игра, как и теннис. А численные методы - другая игра, ее "народность" ровно такая же, как популярность футбола против тенниса. А "совсем прикладники" часто и вовсе без математики обходятся.
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
Кстати, такие "волшебные палочки" попадаются в компьютерах. Допустим, например (условно) что у вас есть процессор, который быстро считает синус (аппаратная реализация). А вам нужен не синус, а квадратный корень. Ясно, что можно как-то приспособить к делу синус.
(no subject)
(no subject)
(no subject)
(no subject)
Bring me a root, NOW!
Re: Bring me a root, NOW!
(no subject)
Re: Bring me a root, NOW!
Re: Bring me a root, NOW!