beldmit: (Программизм)
Dmitry Belyavskiy ([personal profile] beldmit) wrote2021-08-02 06:39 pm

Корень Бринга

Узнал через посредство Саши Венедюхина про корень Бринга — такую вот даже не то что абстракцию, но формальную сущность, с помощью которой решения произвольных уравнений пятой степени становятся реальными.

Почему-то это решение мне кажется читерским. В смысле, я привык к мысли о неразрешимости уравнений пятой и выше степеней в общем виде радикалах и предполагал, что альтернативы нет. А тут даже не дополнение поля происходит, а просто syntax sugar для того, чтобы возможность выразить решение появилась — но неуютно. Причём это, комплексные числа в своё время в голову как информобъекты как родные легли. Загадка, в общем.

При том, что точные формулы для уравнений высоких степеней, в общем-то нафиг никому не сдались в реальной жизни — возникают проблемы с устойчивостью решений при малом шевелении, а численные методы подойдут для большинства практических целей.

Update: Пока катался, до меня дошло, что не так с корнями Бринга. С обычными радикалами или комплексными числами много чего можно сделать. Можно умножить на константу и внести константу под корень. Можно домножить на сопряжённое выражение и от иррациональности избавиться. С корнями Бринга такого сделать не получится. Неочевидно даже, как связаны Br(a) и Br(-a), к примеру. Получаются символы без очевидной семантики, которые, тем не менее, можно вычислить. Из привычной массовой математики таковыми являются разве что π или e.

[personal profile] ald1976 2021-08-03 09:27 am (UTC)(link)
Ну ок, но главное тут в том, что t - это секунды.

И радианы/сек * сек - это радианы, от которых спокойно можно взять синус.

А когда sin(xy), то, по умолчанию, обе переменные равноправны, так что размерность получится радиан^2, что нафиг никому не нужно: телесные углы именно в них и измеряются но синусов от телесных углов нет, слишком они разные.

А если размерность радиан, тогда размерность переменных sqrt(радиан), что вообще дичь.

И не надо говорить, что радиан безразмерен. Ну да, это так. Но в приложениях это либо углы, либо функции кратного аргумента.
livelight: (Default)

[personal profile] livelight 2021-08-03 09:44 am (UTC)(link)
Вообще если у нас физика, то говорить о рациональности чисел (измеренных с погрешностью в произвольных единицах) - малоосмысленное занятие. Исходный пост - он всё же про математику.

[personal profile] ald1976 2021-08-03 09:59 am (UTC)(link)
В физике тоже бывают ряды Фурье :)

Да и начали приводить примеры из физики вы :)
Edited 2021-08-03 10:00 (UTC)